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Abstract. We have developed a novel game theoretical model of N interacting agents playing a minority
game such that they change their strategies intelligently or adaptively depending on their temporal perfor-
mances. The strategy changes are done by generating new strategies through one-point genetic crossover
mechanism. The performances of agents are found to change dramatically (from losing to winning or oth-
erwise) and the game moves rapidly to an efficient state, in which fluctuations in the number of agents
performing a particular action, characterized by the variance σ2, reaches a low value.

PACS. 87.23.Ge Dynamics of social systems – 02.50.Le Decision theory and game theory –
87.23.Kg Dynamics of evolution

1 Introduction

The dynamics of interacting agents competing for scarce
resources are believed to underlie the behaviour of var-
ious complex systems of natural, social and economical
origin [1–5]. An example of such a complex system is finan-
cial market, where competing agents interact with each
other and try to perform their best in order to survive
in accordance with the idea of “survival of the fittest”
in biology. However, the agents need not be human be-
ings restricted to the market place but could vary in
form, size and nature. Also the behavioral patterns of the
agents could vary– the agents are said to be “heteroge-
neous”. In many studies of such market behaviour, tools
of statistical physics have been combined with theories of
economics [6–9], like game theory, which deals with de-
cision making of a number of rational opponents under
conditions of conflict and competition [10–15]. However,
conventional economics studies consistent patterns in be-
havioral equilibrium that require no further interaction.
Since complex systems are constantly evolving processes
the patterns which they create are, in general, out-of-
equilibrium and hence beyond the scope of conventional
economical analyses. Also, in traditional economics the
“rational expectations” approach is assumed to be valid,
which in reality may not hold altogether.

In this paper, we develop a game theoretical model of
a large number of heterogeneous interacting agents adapt-
ing periodically to changing situations such that we can
have a better understanding of the behaviour of the com-
plex systems such as financial markets. Our model is based
on the minority game [11], which provides an alternative
to the common approach of microeconomics with a sin-
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gle representative agent, based on the assumption that all
the agents are identical [16]. The minority game model
consists of agents having a finite number of strategies and
finite amount of public information, interacting through
a global quantity (whose value is fixed by all the agents)
representing a market mechanism. In the original model
the agents choose their strategies through a simple adap-
tive dynamics based on inductive reasoning [5]. Here, we
introduce the fact that the agents are intelligent or adap-
tive and in order to be best or survive in the market,
modify their strategies periodically depending on their
performances. For modifying the strategies, we choose the
mechanism of one-point genetic crossover, following the
ideas of genetic algorithms in computer science and op-
erations research. In fact, these algorithms were inspired
by the processes observed in natural evolution [17–19] and
it turned out that they solve some complicated problems
without knowledge of the decoded world. In nature, one-
point crossover occurs when two parents exchange parts
of their corresponding chromosomes after a selected point,
creating offsprings [19]. We then study this simple model
of complex adaptive systems and examine the behavioral
patterns of the agents.

2 Model and results

The basic minority game consists of an odd number of
agents N who can perform only two actions, at a given
time t, and an agent wins the game if it is one of the
members of the minority group at the end of the game
and then time t increases by unity. The two actions, i.e.
“buying” or “selling” commodities, are denoted here by 0
or 1, respectively. Further, it is assumed that all the agents
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have access to finite amount of public information, which
is a common bit-string “memory” of the M most recent
outcomes. Thus the agents are said to exhibit “bounded
rationality” [5]. For example, in case of memory M = 2
there are P = 2M = 4 possible “history” bit strings: 00,
01, 10 and 11. A “strategy” consists of a response, i.e., 0
or 1, to each possible history bit strings; therefore, there
are G = 2P = 16 possible strategies which constitute the
“total strategy space”. At the beginning of the game, each
agent randomly picks k strategies, and after a game, as-
signs one “virtual” point to the strategies which would
have predicted the correct outcome; the best strategy is
the one which has the highest virtual point. The perfor-
mance of the player is measured by the number of times
the player wins, and the strategy, which the player uses
to win, gets a “real” point. We also keep a record of the
number of agents who have chosen at time t a particu-
lar action, say, “selling” denoted by N1(t). The fluctua-
tions in the behaviour of N1(t) indicate the total utility of
the system. For example, we may have a situation where
only one player is in the minority and thus wins, and all
the other players lose. The other extreme case is when
(N − 1)/2 players are in the minority and (N +1)/2 play-
ers lose. The total utility of the system is highest for the
latter case as the total number of the agents who win is
maximum. Therefore, the system is more efficient when
the fluctuations around the mean are smaller than when
they are larger. These fluctuations can be characterized
by the variance σ2 such that smaller values of σ2 would
correspond to the system being in a more efficient state.

In our model, the players of the basic minority game
are assumed to be intelligent by modifying their strategies
at regular time-intervals τ depending on their current per-
formances. If they find that they are among the fraction
n (where 0 < n < 1) of the worst performing players, they
modify any two of their strategies chosen randomly from
the pool of k strategies and use one of the new strategies
generated. The mechanism by which they modify their
strategies is that of one-point genetic crossover illustrated
schematically in Figure 1. Here the strategies si and sj act
as the parents and by choosing the breaking point in them
randomly, and performing one-point genetic crossover, the
children sk and sl are produced and substitute the parents.

It should be noted that the strategies are changed by
the agents themselves and even though the strategy space
evolves, it is still of the same size and dimension; thus con-
siderably different from earlier models [11,20,21]. Challet
et al. [11] generalized the basic minority game mentioned
above to include the Darwinist selection: the worst player
is replaced by a new one after some time steps, the new
player is a clone of the best player, i.e. it inherits all
the strategies but with corresponding virtual capitals re-
set to zero. To keep a certain diversity they introduced a
mutation possibility in cloning. They allowed one of the
strategies of the best player to be replaced by a new one.
Since strategies are not just recycled among the players
any more, the whole strategy phase space is available for
selection. They expected this population to be capable of
“learning” since bad players were weeded out with time,
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Fig. 1. Schematic diagram to illustrate the mechanism of
one-point genetic crossover for producing new strategies. The
strategies si and sj are the parents. We choose the breaking
point randomly and through this one-point genetic crossover,
the children sk and sl are produced and substitute the parents.

and fighting was among the so-called “best” players. In-
deed, they observed that the learning emerged in time
though very slowly. Fluctuations were reduced and sat-
urated, which implied that the average gain for every-
body did improve but never reached the “ideal limit”.
Li et al. [20] studied the minority game in the presence
of evolution, where games were played with different val-
ues of m and different numbers of agents, analogous to
that found in the non-evolutionary, adaptive games. Li
et al. [21] also studied evolution in minority games by ex-
amining games in which agents with poorly performing
strategies can trade in their strategies for new ones from
a different strategy space. There have been several other
variants of the minority game [22] but the mechanisms
of evolution proposed earlier and objectives of studies are
clearly different from the mechanism we present here.

In our study, we pick up from the total strategy space
only uncorrelated strategies (in our case, strategies which
have pairwise Hamming distance dH = 0.5 and the aver-
age over all the strategies is also 0.5) [23]. Though this
choice is not really necessary, our intention is to keep
the average Hamming distance in an agent’s pool and
thus the average Hamming distance in the whole system
equal to 0.5 throughout the evolution of the game. Our
definition of average Hamming distance should not be
confused with other commonly used definitions, because
we have first taken the average over the distances in an
agent’s strategy pool, and then taken the average for all
the agents. The crossover mechanism which we have used
here does not alter the average Hamming distance. Other
ways to generate new strategies (see e.g., [24,25]) alter
the average Hamming distance and the study of the time
evolution of the average Hamming distance is found to be
very interesting.

In Figure 2, the performances of the players of our
model are compared with those of the basic minority
game. We have scaled the performances of all the play-
ers such that the mean is zero for easy comparison of the
relative success of the agents in each case. In this figure
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Fig. 2. Plots of the performances of the best player, the worst
player and five randomly selected players in (a) the basic mi-
nority game with N = 1001, M = 5, k = 10 and t = 20 000, and
(b) in our intelligent minority game with N = 1001, M = 5,
k = 10, t = 20 000, n = 0.3 and τ = 100.

it is clearly evident that there are significant differences
in the performances of the players. The performance of a
player in the basic minority game does not change drasti-
cally in the course of the game as seen in Figure 2a. How-
ever, like in most evolutionary models, in our model too
the performances of the players may change dramatically
even after initial downfalls, and agents often do better af-
ter they have produced new strategies with the one-point
genetic crossovers, as illustrated in Figure 2b.

In order to study the efficiency of the game, we plot the
time-variation of N1 for the basic minority game in com-
parison to our model in Figures 3a and b, respectively.
Also the corresponding histograms of N1 for the basic mi-
nority game and our model are plotted in Figures 3c and d.
Clearly evident from these figures is the fact that when we
allow one-point genetic crossovers in strategies, the system
moves toward a more efficient state. This is because the
fluctuations in N1, which is seen in the histogram of N1

becoming narrower and sharper. We have also studied the
effect of increasing the fraction of players n on the distri-
butions of the number of switches and the number of ge-
netic crossovers the players make. The results in Figure 4
illustrate the fact that as n increases, more players have
to make large number of strategy switches and crossovers
in order to improve their performances.

We have calculated the variance σ2 of N1 and plot-
ted σ2/N versus the parameter 2M/N in Figure 5a, σ2/N
versus M in Figure 5b. We have found that the quan-
tity σ2/N , as the mean of characterizing the behaviour
of the game, may not always be useful since in the frame-
work of genetic crossovers, it is possible to reach the “ideal
limit” where the fluctuations totally disappear and hence
σ2/N = 0 [24,25]. Following the convention to plot the
σ2/N versus the parameter 2M/N , in Figure 5a we show
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Fig. 3. Plots of the (a) time-variation of N1 for the basic
minority game, (b) time-variation of N1 for the intelligent mi-
nority game, and (c) histogram of N1 for the basic minority
game and (d) histogram of N1 for the intelligent minority game.
Simulations of the basic minority game were performed with
N = 1001, M = 5, k = 10 and t = 1999 and of the intelligent
minority game with N = 1001, M = 5, k = 10, t = 1999,
n = 0.3 and τ = 100.
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Fig. 4. Histograms of the number of switches the players make
in the intelligent minority game for (a) n = 0.3 (b) n = 0.4 (c)
n = 0.5, and histograms of the number of genetic crossovers the
players make in the intelligent minority game for (d) n = 0.3
(e) n = 0.4 and (f) n = 0.5. The simulations have been made
with N = 1001, M = 4, k = 10, t = 1999 and τ = 10.

the behaviour of σ2/N vs. 2M/N for both the original mi-
nority game and our intelligent minority game model by
varying M and N , when the pool of strategies is set to
k = 2. Here it is seen that for the basic minority game
there is a minimum of σ2/N at 2M/N ≈ 0.5, but for the
present set of parameters there is no such minimum for
the intelligent minority game.
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Fig. 5. (a) The plot of σ2/N against the parameter 2M/N
for k = 2, by varying M from 2 to 11 and N from 25 to
1001 for the basic minority game (squares) and the intelligent
minority game (asterisk marks). Simulations were made for
t = 5000 and averaging over ten different samples in each case.
The parameter values chosen for the intelligent minority game
were τ = 10 and n = 0.5. (b) The plot of σ2/N against M
for different values of k for the basic minority game and the
intelligent minority game. For the basic minority game, we have
studied the cases of k = 2 (diamonds), k = 6 (squares) and k =
10 (cross marks). For the intelligent minority game, we have
studied the cases of k = 2 (asterisk marks), k = 6 (triangles)
and k = 10 (circles). The simulations for the basic minority
game have been made with N = 1001 and t = 5000, and for
the intelligent minority game have been made with N = 1001,
t = 5000, n = 0.5 and τ = 10, and averaged over five different
samples in each case.

It should be noted that when k = 2, the crossover
mechanism is not very effective because an agent cannot
evolve good strategies being forced to make the crossover
and generate totally new strategies after every time in-
terval τ . Thus the basic minority game is better for
k = 2 around the minimum. We intuitively expect that
the mechanism is more effective for other combinations of
the parameters k, n and τ .

We also plot in Figure 5b the quantity σ2/N as a func-
tion of M ranging from 2 to 12 for both games when
N = 1001 and for different values of k. It is seen that when
the number of strategies, i.e. k, is increased the efficiency
of the original minority game rapidly decreases while at
the same time making the curves monotonically decreas-
ing. However, in the case of the intelligent minority game,
the situation of curves monotonically decreasing remains
for any combinations of k, M and N , we have studied
with the current parameter set. Also we found that as the
value of k is increased, the efficiency decreases, but at a
rate much less than in the basic minority game. For both
games, the values of σ2/N seem to converge towards a
common value for large values of M . If we compare the
two games, we find that for large k values and moderate
values of M , the differences in σ2/N is very large, thus
rendering the intelligent minority game market much more
efficient.

Furthermore, we have observed that in our model,
the worst players were often those who switched strate-
gies most frequently while the best players were those
who made the least number of switches after finding a
good strategy (for related work in switching strategies cf.
Ref. [11]). In addition, we have found that the players who
do not make any genetic crossovers are unable to compete
with those who make genetic crossovers, and their perfor-
mances were found to fluctuate around the zero mean. It
was also found that as the time-interval τ between con-
secutive crossovers is increased, the time for the system to
reach an efficient state increases. The detailed studies and
analysis of results for various combinations of parameters
have been studied in another communication [24].

3 Discussions

One advantage of our model is clearly that the dimen-
sionality of the strategy space as well as the number of
elements in the strategy space remain the same. It is also
appealing that starting from a small number of strategies,
many “good” strategies can be generated by the players
in the course of the game. Even though the players may
not have performed well initially, they often did better
when they used new strategies generated by the one-point
genetic crossovers. Finally, it should be pointed out that
even in the framework of genetic algorithms, there are
various ways to generate new strategies. One possibility
is that we make a one-point genetic crossover between
the two worst strategies and replace the parents by the
children. Another possibility is to make “hybridized ge-
netic crossover”, where the one-point genetic crossover is
made between the two best strategies, replace the worst
two strategies with the children and retain the parents as
well. We have studied some of these modifications in an-
other communication [25]. This general method described
in the paper is very simple and powerful and it can lead
to further studies not only in game theory in economics
but also form the basis of widely varying topics such as
the modelling of biological evolution of species [26].
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